The WEKA data mining software: an update M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten ACM SIGKDD explorations newsletter 11 (1), 10-18, 2009 | 23848 | 2009 |
Moa: Massive online analysis, a framework for stream classification and clustering A Bifet, G Holmes, B Pfahringer, P Kranen, H Kremer, T Jansen, T Seidl Proceedings of the first workshop on applications of pattern analysis, 44-50, 2010 | 1886 | 2010 |
Classifier chains for multi-label classification J Read, B Pfahringer, G Holmes, E Frank Machine learning 85 (3), 333-359, 2011 | 1848 | 2011 |
Benchmarking attribute selection techniques for discrete class data mining MA Hall, G Holmes IEEE Transactions on Knowledge and Data engineering 15 (6), 1437-1447, 2003 | 1532 | 2003 |
Weka: A machine learning workbench G Holmes, A Donkin, IH Witten Proceedings of ANZIIS'94-Australian New Zealnd Intelligent Information …, 1994 | 1361 | 1994 |
Data mining in bioinformatics using Weka E Frank, M Hall, L Trigg, G Holmes, IH Witten Bioinformatics 20 (15), 2479-2481, 2004 | 1089 | 2004 |
Classifier chains for multi-label classification J Read, B Pfahringer, G Holmes, E Frank Joint European conference on machine learning and knowledge discovery in …, 2009 | 880 | 2009 |
Weka: Practical machine learning tools and techniques with Java implementations IH Witten, E Frank, LE Trigg, MA Hall, G Holmes, SJ Cunningham | 762 | 1999 |
New ensemble methods for evolving data streams A Bifet, G Holmes, B Pfahringer, R Kirkby, R Gavalda Proceedings of the 15th ACM SIGKDD international conference on Knowledge …, 2009 | 719 | 2009 |
Weka-a machine learning workbench for data mining E Frank, M Hall, G Holmes, R Kirkby, B Pfahringer, IH Witten, L Trigg Data mining and knowledge discovery handbook, 1269-1277, 2009 | 668 | 2009 |
Multinomial naive bayes for text categorization revisited AM Kibriya, E Frank, B Pfahringer, G Holmes Australasian Joint Conference on Artificial Intelligence, 488-499, 2004 | 505 | 2004 |
Using model trees for classification E Frank, Y Wang, S Inglis, G Holmes, IH Witten Machine learning 32 (1), 63-76, 1998 | 500 | 1998 |
Multi-label classification using ensembles of pruned sets J Read, B Pfahringer, G Holmes 2008 eighth IEEE international conference on data mining, 995-1000, 2008 | 494 | 2008 |
Adaptive random forests for evolving data stream classification HM Gomes, A Bifet, J Read, JP Barddal, F Enembreck, B Pfharinger, ... Machine Learning 106 (9), 1469-1495, 2017 | 421 | 2017 |
WEKA---Experiences with a Java Open-Source Project RR Bouckaert, E Frank, MA Hall, G Holmes, B Pfahringer, P Reutemann, ... The Journal of Machine Learning Research 11, 2533-2541, 2010 | 418 | 2010 |
Generating rule sets from model trees G Holmes, M Hall, E Prank Australasian joint conference on artificial intelligence, 1-12, 1999 | 366 | 1999 |
Active learning with drifting streaming data I Žliobaitė, A Bifet, B Pfahringer, G Holmes IEEE transactions on neural networks and learning systems 25 (1), 27-39, 2013 | 353 | 2013 |
Leveraging bagging for evolving data streams A Bifet, G Holmes, B Pfahringer Joint European conference on machine learning and knowledge discovery in …, 2010 | 346 | 2010 |
Meka: a multi-label/multi-target extension to weka J Read, P Reutemann, B Pfahringer, G Holmes | 271 | 2016 |
The need for open source software in machine learning S Sonnenburg, ML Braun, CS Ong, S Bengio, L Bottou, G Holmes, ... JMLR 8, 2443-2466, 2007 | 246 | 2007 |