Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data Y Zhu, N Zabaras, PS Koutsourelakis, P Perdikaris Journal of Computational Physics 394, 56-81, 2019 | 980 | 2019 |
Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification Y Zhu, N Zabaras Journal of Computational Physics 366, 415-447, 2018 | 722 | 2018 |
An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations X Ma, N Zabaras Journal of Computational Physics 228 (8), 3084-3113, 2009 | 605 | 2009 |
Sparse grid collocation schemes for stochastic natural convection problems B Ganapathysubramanian, N Zabaras Journal of Computational Physics 225 (1), 652-685, 2007 | 529 | 2007 |
Deep convolutional encoder‐decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media S Mo, Y Zhu, N Zabaras, X Shi, J Wu Water Resources Research 55 (1), 703-728, 2019 | 316 | 2019 |
An inverse method for determining elastic material properties and a material interface DS Schnur, N Zabaras International Journal for Numerical Methods in Engineering 33 (10), 2039-2057, 1992 | 316 | 1992 |
A Bayesian inference approach to the inverse heat conduction problem J Wang, N Zabaras International journal of heat and mass transfer 47 (17-18), 3927-3941, 2004 | 310 | 2004 |
Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks N Geneva, N Zabaras Journal of Computational Physics 403, 109056, 2020 | 303 | 2020 |
An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations X Ma, N Zabaras Journal of Computational Physics 229 (10), 3884-3915, 2010 | 261 | 2010 |
Deep autoregressive neural networks for high‐dimensional inverse problems in groundwater contaminant source identification S Mo, N Zabaras, X Shi, J Wu Water Resources Research 55 (5), 3856-3881, 2019 | 225 | 2019 |
Classification and reconstruction of three-dimensional microstructures using support vector machines V Sundararaghavan, N Zabaras Computational Materials Science 32 (2), 223-239, 2005 | 217 | 2005 |
Hierarchical Bayesian models for inverse problems in heat conduction J Wang, N Zabaras Inverse Problems 21 (1), 183, 2004 | 216 | 2004 |
Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification I Bilionis, N Zabaras, BA Konomi, G Lin Journal of Computational Physics 241, 212-239, 2013 | 204 | 2013 |
Multi-output local Gaussian process regression: Applications to uncertainty quantification I Bilionis, N Zabaras Journal of Computational Physics 231 (17), 5718-5746, 2012 | 195 | 2012 |
An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method X Ma, N Zabaras Inverse Problems 25 (3), 035013, 2009 | 175 | 2009 |
Using Bayesian statistics in the estimation of heat source in radiation J Wang, N Zabaras International Journal of Heat and Mass Transfer 48 (1), 15-29, 2005 | 175 | 2005 |
A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods L Tan, N Zabaras Journal of Computational Physics 211 (1), 36-63, 2006 | 172 | 2006 |
Finite element analysis of some inverse elasticity problems A Maniatty, N Zabaras, K Stelson Journal of engineering mechanics 115 (6), 1303-1317, 1989 | 158 | 1989 |
A sensitivity analysis for the optimal design of metal-forming processes S Badrinarayanan, N Zabaras Computer Methods in Applied Mechanics and Engineering 129 (4), 319-348, 1996 | 156 | 1996 |
Finite element analysis of progressive failure in laminated composite plates S Tolson, N Zabaras Computers & Structures 38 (3), 361-376, 1991 | 156 | 1991 |