Unsupervised acoustic unit discovery for speech synthesis using discrete latent-variable neural networks R Eloff, A Nortje, B van Niekerk, A Govender, L Nortje, A Pretorius, ... arXiv preprint arXiv:1904.07556, 2019 | 56 | 2019 |
A meta-analysis of research in random forests for classification A Pretorius, S Bierman, SJ Steel 2016 Pattern Recognition Association of South Africa and Robotics and …, 2016 | 39 | 2016 |
Learning dynamics of linear denoising autoencoders A Pretorius, S Kroon, H Kamper International Conference on Machine Learning, 2018 | 27 | 2018 |
On optimal transformer depth for low-resource language translation E Van Biljon, A Pretorius, J Kreutzer arXiv preprint arXiv:2004.04418, 2020 | 24 | 2020 |
Human decision making and artificial intelligence: a comparison in the domain of sports prediction A Pretorius, DA Parry Proceedings of the Annual Conference of the South African Institute of …, 2016 | 19 | 2016 |
Critical initialisation for deep signal propagation in noisy rectifier neural networks A Pretorius, E Van Biljon, S Kroon, H Kamper Advances in Neural Information Processing Systems, 5722-5731, 2018 | 18 | 2018 |
Towards a standardised performance evaluation protocol for cooperative marl R Gorsane, O Mahjoub, RJ de Kock, R Dubb, S Singh, A Pretorius Advances in Neural Information Processing Systems 35, 5510-5521, 2022 | 14 | 2022 |
Causal multi-agent reinforcement learning: Review and open problems SJ Grimbly, J Shock, A Pretorius arXiv preprint arXiv:2111.06721, 2021 | 10 | 2021 |
Mava: A research framework for distributed multi-agent reinforcement learning A Pretorius, K Tessera, AP Smit, C Formanek, SJ Grimbly, K Eloff, ... arXiv preprint arXiv:2107.01460, 2021 | 10 | 2021 |
A game-theoretic analysis of networked system control for common-pool resource management using multi-agent reinforcement learning A Pretorius, S Cameron, E Van Biljon, T Makkink, S Mawjee, J du Plessis, ... Advances in neural information processing systems 33, 9983-9994, 2020 | 8 | 2020 |
On the expected behaviour of noise regularised deep neural networks as Gaussian processes A Pretorius, H Kamper, S Kroon Pattern Recognition Letters 138, 75-81, 2020 | 6 | 2020 |
A bias-variance analysis of ensemble learning for classification A Pretorius, S Bierman, SJ Steel Annual Proceedings of the South African Statistical Association Conference …, 2016 | 6 | 2016 |
Jumanji: a Diverse Suite of Scalable Reinforcement Learning Environments in JAX C Bonnet, D Luo, D Byrne, S Surana, V Coyette, P Duckworth, LI Midgley, ... arXiv preprint arXiv:2306.09884, 2023 | 3 | 2023 |
If dropout limits trainable depth, does critical initialisation still matter? A large-scale statistical analysis on ReLU networks A Pretorius, E Van Biljon, B van Niekerk, R Eloff, M Reynard, S James, ... Pattern Recognition Letters 138, 95-105, 2020 | 3 | 2020 |
Stabilising priors for robust bayesian deep learning F McGregor, A Pretorius, J Preez, S Kroon arXiv preprint arXiv:1910.10386, 2019 | 3 | 2019 |
Advances in random forests with application to classification A Pretorius Stellenbosch: Stellenbosch University, 2016 | 3 | 2016 |
Off-the-Grid MARL: a Framework for Dataset Generation with Baselines for Cooperative Offline Multi-Agent Reinforcement Learning C Formanek, A Jeewa, J Shock, A Pretorius arXiv preprint arXiv:2302.00521, 2023 | 2 | 2023 |
Universally expressive communication in multi-agent reinforcement learning M Morris, TD Barrett, A Pretorius Advances in Neural Information Processing Systems 35, 33508-33522, 2022 | 2 | 2022 |
On pseudo-absence generation and machine learning for locust breeding ground prediction in Africa IS Yusuf, K Tessera, T Tumiel, Z Slim, A Kerkeni, S Nevo, A Pretorius arXiv preprint arXiv:2111.03904, 2021 | 2 | 2021 |
Learning to communicate through imagination with model-based deep multi-agent reinforcement learning A Pretorius, S Cameron, AP Smit, E van Biljon, L Francis, F Azeez, ... | 1 | 2020 |